
Turing Machines
Part Two

Recap from Last Time

The Church-Turing Thesis claims that

every effective method of computation is either
equivalent to or weaker than a Turing machine.

Very Important Terminology

Let M be a Turing machine and let w be a string.

M accepts w if it enters an accept state when run on w.

M rejects w if it enters a reject state when run on w.

M loops infinitely on w (or just loops on w) if when run on w it
enters neither an accept nor a reject state.

M does not accept w if it either rejects w or loops infinitely on w.

M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

The language of a Turing machine M, denoted ℒ(M), is the set
of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

For any w ∈ ℒ(M), M accepts w.

For any w ∉ ℒ(M), M does not accept w.

M might reject w, or it might loop on w.

A language is called recognizable if it is the language of some
TM.

A TM M where ℒ(M) = L is called a recognizer for L.

Notation: the class RE is the set of all recognizable languages.

L ∈ RE ↔ L is recognizable

What do you think? Does that
correspond to what you think it

means to solve a problem?

New Stuff!

Deciders

Some Turing machines always halt; they never go
into an infinite loop.

If M is a TM and M halts on every possible input,
then we say that M is a decider.

For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject

halts (always)

does not accept

does not reject

Decidable Languages

A language L is called decidable if there is a decider
M such that ℒ(M) = L.

Equivalently, a language L is decidable if there is a
TM M such that

• If w ∈ L, then M accepts w.

• If w ∉ L, then M rejects w.

The class R is the set of all decidable languages.

L ∈ R ↔ L is decidable

Decidable problems, in some sense, problems that
can definitely be “solved” by a computer.

A Feel for R and RE

Say you’re working on a CS assignment
and you ask yourself the question “does my
program have a bug?”

• An RE perspective: if you find a bug, you know for
sure the answer is “yes”, but not finding one
doesn’t necessarily mean the answer is “no”.

• An R perspective: it would be great if there were a
magic program that could look at your code and
tell you whether it’s correct. (Does something like
this exist?)

R and RE Languages

Every decider is a Turing machine, but not every
Turing machine is a decider.

This means that R ⊆ RE.

Hugely important theoretical question:

R ≟ RE
That is, if you can just confirm “yes” answers to a
problem, can you necessarily solve that problem?

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

What problems can we solve with a computer?

What is a “problem?”

Decision Problems

A decision problem is a type of problem where
the goal is to provide a yes or no answer.

Example: Bin Packing

You're given a list of patients who need to be seen
and how much time each one needs to be seen for.
You're given a list of doctors and how much free
time they have. Is there a way to schedule the

patients so that they can all be seen?

Example: Dominating Set Problem

You're given a transportation grid and a number k.
Is there a way to place emergency supplies in at

most k cities so that every city either has
emergency supplies or is adjacent to a city that has

emergency supplies?

A Model for Solving Problems

Yes

No

Computational
Device

A Model for Solving Problems

Yes

No

Computational
Device

Yes

A Model for Solving Problems

Yes

No

Computational
Device

No

A Model for Solving Problems

Yes

No

Computational
Device

A Model for Solving Problems

Yes

No

Turing Machine

A Model for Solving Problems

Yes

No

Turing Machine

(accept)

(reject)

A Model for Solving Problems

Yes

No

Turing Machine

(accept)

(reject)
How do we

represent our
inputs?

Humbling Thought:

Everything on your computer is a
string over {0, 1}.

Strings and Objects

Think about how my
computer encodes
the image on the
right.

Internally, it's just a
series of zeros and
ones sitting on my
hard drive.

Strings and Objects

A different sequence
of 0s and 1s gives rise
to the image on the
right.

Every image can be
encoded as a
sequence of 0s and 1s,
though not all
sequences of 0s and
1s correspond to
images.

Object Encodings

If Obj is some mathematical object that is discrete and finite,
then we’ll use the notation ⟨Obj⟩ to refer to some way of
encoding that object as a string.

Think of ⟨Obj⟩ like a file on disk – it encodes some high-level
object as a series of characters.

Key idea: If you want to have a TM compute something about
Obj, you can provide the string ⟨Obj⟩ as input to that Turing
machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 11011100101110111100010011…110

Object Encodings

If Obj is some mathematical object that is discrete and finite,
then we’ll use the notation ⟨Obj⟩ to refer to some way of
encoding that object as a string.

Think of ⟨Obj⟩ like a file on disk – it encodes some high-level
object as a series of characters.

Key idea: If you want to have a TM compute something about
Obj, you can provide the string ⟨Obj⟩ as input to that Turing
machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 00110101000101000101000100…001

Object Encodings

For the purposes of what we’re going to be doing,
we aren’t going to worry about exactly how objects
are encoded.

For example, we can say ⟨137⟩ to mean “some
encoding of 137” without worrying about how it’s
encoded.

Analogy: do you need to know how the int type is
represented in C++ to do basic C++
programming? That’s more of a CS107 question.

We’ll assume, whenever we’re dealing with
encodings, that some Smart, Attractive, Witty
person has figured out an encoding system for us
and that we’re using that encoding system.

Encoding Groups of Objects

Given a group of objects Obj₁, Obj₂, …, Objₙ,
we can create a single string encoding all
these objects.

• Think of it like a .zip file, but without the
compression.

We'll denote the encoding of all of these
objects as a single string by ⟨Obj₁, …, Objₙ⟩.

This lets us feed multiple inputs into our
computational device at the same time.

A Model for Solving Problems

Yes

No

Turing Machine

(accept)

(reject)

A Model for Solving Problems

Yes

No

Turing Machine

(accept)

(reject)

What problems can we solve with a computer?

Emergent Properties

Emergent Properties

An emergent property of a system is a property
that arises out of smaller pieces that doesn't seem
to exist in any of the individual pieces.

Examples:

• Individual neurons work by firing in response to
particular combinations of inputs. Somehow, this
leads to consciousness, love, and ennui.

• Individual atoms obey the laws of quantum
mechanics and just interact with other atoms.
Somehow, it's possible to combine them together
to make iPhones and pumpkin pie.

Emergent Properties of Computation

• All computing systems equal to Turing machines
exhibit several surprising emergent properties.

• If we believe the Church-Turing thesis, these
emergent properties are, in a sense, “inherent”
to computation. Computation can’t exist without
them.

• These emergent properties are what ultimately
make computation so interesting and so
powerful.

• As we'll see, though, they're also computation's
Achilles heel – they're how we find concrete
examples of impossible problems.

Two Emergent Properties

There are two key emergent properties of
computation that we will discuss:

• Universality: There is a single computing
device capable of performing any
computation.

• Self-Reference: Computing devices can
ask questions about their own behavior.

As you'll see, the combination of these
properties leads to simple examples of
impossible problems and elegant proofs of
impossibility.

Universal Machines

An Observation

When we've been discussing Turing
machines, we've talked about designing
specific TMs to solve specific problems.

Does this match your real-world
experiences? Do you have one computing
device for each task you need to perform?

Can we make a “reprogrammable
Turing machine?”

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.

● We could imagine it as a method

boolean simulateTM(TM M, string w)

with the following behavior:

● If M accepts w, then simulateTM(M, w) returns true .

● If M rejects w, then simulateTM(M, w) returns false .

● If M loops on w, then simulateTM(M, w) loops infinitely.

true!

false!simulateTM

(loop)

M

...input...w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

accept!

reject!

(loop)

...input...

M

w
TM that runs

other TMs

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

...input...

M

w Universal TM

accept!

reject!

(loop)

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

TM

...input...

M

w Universal TM

accept!

reject!

(loop)

M does to w

what

UTM does to ⟨M, w⟩.

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q
rej

Imagine you have some machine M
(like a program) that you want to run

on input w.

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

Take M and write it down as a string
(think like encoding the finite state

control as a table)

q
rej

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… …

M

Take M and write it down as a string
(think like encoding the finite state

control as a table)

q
rej

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… …

M

Now take your input w and write it
down too.q

rej

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M

Now take your input w and write it
down too.

w

q
rej

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

Feed this into UTM.

q
rej

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update
state and

tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Update state
and tape

Look up
what M

should do
upon

reading w

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

□ → □, R
a → □, R

a → □, R □ → □, R

start

UTM, Schematically

q
0

q
1

q
acc

a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

UTM, Schematically

q
0

q
1

q
acc

a a a… …

Machine M

Input w

q0 a ☐ R … q1 a …… a a a …

M w

Input ⟨M, w⟩

UTM

q
acc

q
rej q

rej

Look at next char of w

Look up
what M

should do
upon

reading w

Update state
and tape

Since UTM is a TM, it has a language.

What is the language of the universal
Turing machine?

The Language of UTM

Recall that the language of a TM is the set of all
strings that TM accepts.

UTM, when run on a string ⟨M, w⟩, where M is a TM
and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w}

= { ⟨M, w⟩ | M is a TM and w
∈ ℒ(M) }

The Language of UTM

Recall that the language of a TM is the set of all
strings that TM accepts.

UTM, when run on a string ⟨M, w⟩, where M is a TM
and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w}

= { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

The Language ATM

The acceptance language for Turing
machines, denoted ATM, is the language of the
universal Turing machine:

ATM = ℒ(UTM)

= { ⟨M, w⟩ | M is a TM and
M accepts w }

Useful fact:

⟨M, w⟩ ∈ ATM ↔ M accepts w.

Because ATM = ℒ(UTM), we know that ATM ∈ RE.

Great Question to Ponder

Simplify this expression:

⟨UTM, ⟨UTM, ⟨UTM, ⟨UTM, ⟨M, w⟩⟩⟩⟩⟩ ∈ ATM.

If you can do this, you probably understand
how things fit together.

If you’re having trouble, no worries! It
might be easier to start with this
expression:

⟨UTM, ⟨M, w⟩⟩ ∈ ATM.

Regular
Languages CFLs

All Languages

RE

A
TM

Uh… so what?

Universality of computation has
practical consequences.

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!simulateTM

(loop)

M

...input...w

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!simulateProgram

(loop)

...input...w

for (int i = 2;
i < n; i++) {
if (n % i == 0)

…
}

code

Programs Simulating Programs

The fact that there’s a universal TM,
combined with the fact that computers can
simulate TMs and vice-versa, means that it’s
possible to write a program that simulates
other programs.

These programs go by many names:

An interpreter, like the Java Virtual
Machine or most implementations of
Python.

A virtual machine, like VMWare or
VirtualBox, that simulates an entire
computer.

Why Does This Matter?

● The key idea behind the universal TM is that
idea that TMs can be fed as inputs into other
TMs.

● Similarly, an interpreter is a program that takes
other programs as inputs.

● Similarly, an emulator is a program that takes entire
computers as inputs.

● This hits at the core idea that computing
devices can perform computations on other
computing devices.

Time-Out for Announcements!

Problem Sets

• Problem Set Five is due tomorrow night.

• Late period extends this to Saturday.

• This is the last assignment you can take
a late period on.

• If you submitted the CFG before we
linked to it, you need to submit again.

Final Exam Logistics

• Our final exam is next Friday.

• The exam is cumulative. You’re
responsible for topics from PS0 – PS6
and all of the lectures up through
Unsolvable Problems (this Friday).

• The exam is the same style as the
midterm. More details on a Campuswire
post going up today.

Your Questions

“Why did you decide to coterm (versus
double major, minor, enter industry before
grad school, etc) and what do you wish you

had known before coterming?”

Your Questions

“Tabs or spaces?”

Your Questions

“What made you interested in CS?”

Your Questions

Have more questions?

Go to sli.do and put in code G517.

The event is closed, but you can still click
on it and add questions / vote.

Let’s take a five minute break!

Teaser #1:

This language ATM has some interesting
properties beyond what we’ve seen here.

Self-Referential Software

Quines

A Quine is a program that, when run,
prints its own source code.

Quines aren't allowed to just read the file
containing their source code and print it
out; that's cheating (and technically
incorrect if someone changes that file!)

How would you write such a program?

Writing a Quine

Self-Referential Programs

Claim: Going forward, assume that any
program can be augmented to include a
method called mySource() that returns a string
representation of its source code.

General idea:

• Write the initial program with mySource() as a
placeholder.

• Use the Quine technique we just saw to
convert the program into something self-
referential.

Now, mySource() magically works as intended.

Self-Referential Programs

The fact that we can write Quines is not a
coincidence.

Theorem (Kleene’s Second Recursion
Theorem): It is possible to construct TMs
that perform arbitrary computations on their
own “source code” (the string encoding of the
TM).

In other words, any computing system that’s
equal to a Turing machine possesses some
mechanism for self-reference!

Want to see how deep the rabbit hole goes?
Take CS154!

Teaser #2:

Self-reference lets machines compute on
themselves. That lets them do Cruel and

Unusual Things.

A Note on TM/Program Equivalence

Equivalence of TMs and Programs

Every TM

• receives some input,

• does some work, then

• (optionally) accepts or rejects.

We can model a TM as a computer program where

• the input is provided by a special method
getInput() that returns the input to the program,

• the program's logic is written in a normal
programming language, and

• the program (optionally) calls the special method
accept() to immediately accept the input and
reject() to immediately reject the input.

Equivalence of TMs and Programs

Here's a sample program we might use to model a
Turing machine for { w ∈ {a, b}* | w has the same
number of a's and b's }:

int main() {
string input = getInput();
int difference = 0;

for (char ch: input) {
if (ch == 'a') difference++;
else if (ch == 'b') difference--;
else reject();

}

if (difference == 0) accept();
else reject();

}

Equivalence of TMs and Programs

As mentioned before, it's always possible to build a
method mySource() into a program, which returns the
source code of the program.

For example, here's a narcissistic program:

int main() {
string me = mySource();
string input = getInput();

if (input == me) accept();
else reject();

}

Equivalence of TMs and Programs

Sometimes, TMs use other TMs as subroutines.

We can think of a decider for a language as a
method that takes in some number of arguments
and returns a boolean.

For example, a decider for { anbn | n ∈ ℕ } might be
represented in software as a method with this
signature:

bool isAnBn(string w);

Similarly, a decider for { ⟨m, n⟩ | m, n ∈ ℕ and m is
a multiple of n } might be represented in software
as a method with this signature:

bool isMultipleOf(int m, int n);

Self-Defeating Objects

A self-defeating object is an object whose
essential properties ensure it doesn’t exist.

Question: Why is there no largest integer?

Answer: Because if n is the largest integer,
what happens when we look at n+1?

Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■

Self-Defeating Objects

Self-Defeating Objects

The general template for proving that x is a
self-defeating object is as follows:

• Assume that x exists.

• Construct some object f(x) from x.

• Show that f(x) has some impossible
property.

• Conclude that x doesn’t exist.

The particulars of what x and f(x) are, and
why f(x) has an impossible property,
depend on the specifics of the proof.

An Important Point

Claim: There is a largest integer.

Proof: Assume x is the largest integer.

Notice that x > x – 1.

So there’s no contradiction. ■

How do we know there’s no
contradiction? We just checked one

case.

Careful – we’re assuming
what we’re trying to prove!

Self-Defeating Objects

You cannot show that a self-defeating object x
does exist by using this line of reasoning:

• Suppose that x exists.

• Construct some object g(x) from x.

• Show that g(x) has no undesirable properties.

• Conclude that x exists.

The fact that g(x) has no bad properties doesn’t
mean that x exists. It just means you didn’t look
hard enough for a counterexample. 😃

Teaser #3:

Certain Turing machines can’t exist, as
they’d be self-defeating objects.

Learning About a String

Suppose M is a recognizer for some important
language.

We have a string w and we really, really want to
know whether w ∈ ℒ(M).

How could we do this?

Observation:

w ∈ ℒ(M)

if and only if

M accepts w.
… you can try to

determine whether
this is true.

If you want to know
whether this is true…

Learning About a String

Option 1: Run M on w.

What could happen?

• M could accept w. Great! We know w ∈
ℒ(M).

• M could reject w. Great! We know w ∉ ℒ(M).

• M could loop on w. Hmmm. We’ve learned
nothing.

This won’t always tell us whether w ∈ ℒ(M).
We’ll need a different strategy.

Observation:

w ∈ ℒ(M)

if and only if

M accepts w

if and only if

⟨M, w⟩ ∈ ATM.
… you can try to

determine whether
this is true.

If you want to know
whether this is true…

Learning About a String

Option 2: Use the universal Turing machine, which
is a recognizer for ATM!

Specifically, run UTM on ⟨M, w⟩.

What could happen?

• UTM could accept ⟨M, w⟩. Great! Then w ∈ ℒ(M).

• UTM could reject ⟨M, w⟩. Great! Then w ∉ ℒ(M).

• UTM could loop on ⟨M, w⟩. Hmmm. We’ve learned
nothing.

This won’t always tell us whether w ∈ ℒ(M). We’ll
need a different strategy.

Learning About a String

Option 2: Use the universal Turing machine, which
is a recognizer for ATM!

Specifically, run UTM on ⟨M, w⟩.

What could happen?

UTM could accept ⟨M, w⟩. Great! Then w ∈ ℒ(M).

UTM could reject ⟨M, w⟩. Great! Then w ∉ ℒ(M).

UTM could loop on ⟨M, w⟩. Hmmm. We’ve learned
nothing.

This won’t always tell us whether w ∈ ℒ(M). We’ll
need a different strategy.

What if we used a
decider, not a
recognizer?

Learning About a String

Option 3: Build a decider for ATM, rather than just
a recognizer.

Specifically, build a decider for ATM, then run that
decider on ⟨M, w⟩.

What could happen?

The decider could accept ⟨M, w⟩. Then w ∈ ℒ(M).

The decider could reject ⟨M, w⟩. Then w ∉ ℒ(M).

Question: How do we build this decider?

Decider
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

Claim: A decider for ATM is a self-defeating
object. It therefore doesn’t exist.

A Self-Defeating Object

Let’s suppose that, somehow, we managed to build a
decider for ATM.

Schematically, that decider would look like this:

We could represent this decider in software as a
method

bool willAccept(string program, string input);

that takes as input a program and a string, then returns
whether that program will accept that string.

Decider
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its
input?

It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

“The largest
integer n”

“Using n to get n + 1”

What does this program do?

bool willAccept(string program, string
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest
integer.

Proof sketch: Suppose for the
sake of contradiction that there
is a largest integer. Call that
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest
integer.

Contradiction! ■

What does this program do?

bool willAccept(string program, string
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest
integer.

Proof sketch: Suppose for the
sake of contradiction that there
is a largest integer. Call that
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest
integer.

Contradiction! ■-ish

Assume there exists this object x which has these
properties that are too powerful to actually work.

What does this program do?

bool willAccept(string program, string
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest
integer.

Proof sketch: Suppose for the
sake of contradiction that there
is a largest integer. Call that
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest
integer.

Contradiction! ■-ish

Use the purported properties of x against itself to
create a contradiction.

What does this program do?

bool willAccept(string program, string
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest
integer.

Proof sketch: Suppose for the
sake of contradiction that there
is a largest integer. Call that
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest
integer.

Contradiction! ■-ish

Thus, this object x cannot exist!

What does this program do?

bool willAccept(string program, string
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest
integer.

Proof sketch: Suppose for the
sake of contradiction that there
is a largest integer. Call that
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest
integer.

Contradiction! ■-ish

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■

Regular
Languages CFLs

All Languages

R RE

ATM

What Does This Mean?

In one fell swoop, we've proven that

• A decider for ATM is a self-defeating
object.

• ATM is undecidable; there is no general
algorithm that can determine whether a
TM will accept a string.

• R ≠ RE, because ATM ∉ R but ATM ∈ RE.

What do these three statements really
mean? As in, why should you care?

Self-Defeating Objects

The fact that a decider for ATM is a self-
defeating object is analogous to this classic
philosophical question:

If you know what you are fated
to do, can you avoid your fate?

If we have a decider for ATM, we could use
it to build a TM that determines what it’s
supposed to do next, then chooses to do the
opposite!

ATM ∉ R

The proof we've done says that

There is no algorithm that can
determine whether a program will

accept an input.

Our proof just assumed there was some
decider for ATM and didn't assume anything
about how that decider worked. No matter
how you try to implement a decider for ATM,
you can never succeed!

ATM ∉ R

What exactly does it mean for ATM to be
undecidable?

Intuition: The only general way to find
out what a program will do is to run it.

As you'll see, this means that it's provably
impossible for computers to be able to
answer questions about what a program
will do.

ATM ∉ R

At a more fundamental level, the existence of
undecidable problems tells us the following:

There is a difference between what is true and
what we can discover is true.

Given a TM M and a string w, one of these two
statements is true:

M accepts w

M does not accept w

But since ATM is undecidable, there is no algorithm
that can always determine which of these
statements is true!

R ≠ RE

Because R ≠ RE, there is a difference
between decidability and recognizability:

In some sense, it is fundamentally
harder to solve a problem than it is to

check an answer.

There are problems where when you have
the answer, you can confirm it (build a
recognizer), but where if you don’t have
the answer, you can’t come up with it in a
mechanical way (build a decider).

Next Time

More Undecidable Problems

Problems truly beyond the limits of
algorithmic problem-solving!

Consequences of Undecidability

Why does any of this matter outside of a
computer science course?

