
Turing Machines
Part Two



Recap from Last Time



The Church-Turing Thesis claims that

every effective method of computation is either 
equivalent to or weaker than a Turing machine.



Very Important Terminology

Let M be a Turing machine and let w be a string.

M accepts w if it enters an accept state when run on w.

M rejects w if it enters a reject state when run on w.

M loops infinitely on w (or just loops on w) if when run on w it 
enters neither an accept nor a reject state.

M does not accept w if it either rejects w or loops infinitely on w.

M does not reject w w if it either accepts w or loops on w.

M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



The Language of a TM

The language of a Turing machine M, denoted ℒ(M), is the set 
of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

For any w ∈ ℒ(M), M accepts w.

For any w ∉ ℒ(M), M does not accept w.

M might reject w, or it might loop on w.

A language is called recognizable if it is the language of some 
TM.

A TM M where ℒ(M) = L is called a recognizer for L.

Notation: the class RE is the set of all recognizable languages.

L ∈ RE ↔   L is recognizable    



What do you think? Does that
correspond to what you think it

means to solve a problem?



New Stuff!



Deciders

Some Turing machines always halt; they never go 
into an infinite loop.

If M is a TM and M halts on every possible input, 
then we say that M is a decider.

For deciders, accepting is the same as not 
rejecting and rejecting is the same as not 
accepting.

Accept

Reject

halts (always)

does not accept                                   

does not reject                                   



Decidable Languages

A language L is called decidable if there is a decider 
M such that ℒ(M) = L.

Equivalently, a language L is decidable if there is a 
TM M such that

• If w ∈ L, then M accepts w.

• If w ∉ L, then M rejects w.

The class R is the set of all decidable languages.

L ∈ R ↔ L is decidable

Decidable problems, in some sense, problems that 
can definitely be “solved” by a computer.



A Feel for R and RE

Say you’re working on a CS assignment 
and you ask yourself the question “does my 
program have a bug?”

• An RE perspective: if you find a bug, you know for 
sure the answer is “yes”, but not finding one 
doesn’t necessarily mean the answer is “no”.

• An R perspective: it would be great if there were a 
magic program that could look at your code and 
tell you whether it’s correct. (Does something like 
this exist?)



R and RE Languages

Every decider is a Turing machine, but not every 
Turing machine is a decider.

This means that R ⊆ RE.

Hugely important theoretical question:

R ≟ RE
That is, if you can just confirm “yes” answers to a 
problem, can you necessarily solve that problem?



Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?



Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?



What problems can we solve with a computer?

What is a “problem?”



Decision Problems

A decision problem is a type of problem where 
the goal is to provide a yes or no answer.

Example: Bin Packing

You're given a list of patients who need to be seen 
and how much time each one needs to be seen for. 
You're given a list of doctors and how much free 
time they have. Is there a way to schedule the 

patients so that they can all be seen?

Example: Dominating Set Problem

You're given a transportation grid and a number k. 
Is there a way to place emergency supplies in at 

most k cities so that every city either has 
emergency supplies or is adjacent to a city that has 

emergency supplies?



A Model for Solving Problems
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Computational
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A Model for Solving Problems

Yes

No

Turing Machine

(accept)

(reject)
How do we 

represent our 
inputs?



Humbling Thought:

Everything on your computer is a 
string over {0, 1}.



Strings and Objects

Think about how my 
computer encodes 
the image on the 
right.

Internally, it's just a 
series of zeros and 
ones sitting on my 
hard drive.



Strings and Objects

A different sequence 
of 0s and 1s gives rise 
to the image on the 
right.

Every image can be 
encoded as a 
sequence of 0s and 1s, 
though not all 
sequences of 0s and 
1s correspond to 
images.



Object Encodings

If Obj is some mathematical object that is discrete and finite, 
then we’ll use the notation ⟨Obj⟩ to refer to some way of 
encoding that object as a string.

Think of ⟨Obj⟩ like a file on disk – it encodes some high-level 
object as a series of characters.

Key idea: If you want to have a TM compute something about 
Obj, you can provide the string ⟨Obj⟩ as input to that Turing 
machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any 
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 11011100101110111100010011…110



Object Encodings

If Obj is some mathematical object that is discrete and finite, 
then we’ll use the notation ⟨Obj⟩ to refer to some way of 
encoding that object as a string.

Think of ⟨Obj⟩ like a file on disk – it encodes some high-level 
object as a series of characters.

Key idea: If you want to have a TM compute something about 
Obj, you can provide the string ⟨Obj⟩ as input to that Turing 
machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any 
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 00110101000101000101000100…001



Object Encodings

For the purposes of what we’re going to be doing, 
we aren’t going to worry about exactly how objects 
are encoded.

For example, we can say ⟨137⟩ to mean “some 
encoding of 137” without worrying about how it’s 
encoded.

Analogy: do you need to know how the int type is 
represented in C++ to do basic C++ 
programming? That’s more of a CS107 question.

We’ll assume, whenever we’re dealing with 
encodings, that some Smart, Attractive, Witty 
person has figured out an encoding system for us 
and that we’re using that encoding system.



Encoding Groups of Objects

Given a group of objects Obj₁, Obj₂, …, Objₙ, 
we can create a single string encoding all 
these objects.

• Think of it like a .zip file, but without the 
compression.

We'll denote the encoding of all of these 
objects as a single string by ⟨Obj₁, …, Objₙ⟩.

This lets us feed multiple inputs into our 
computational device at the same time.
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What problems can we solve with a computer?



Emergent Properties



Emergent Properties

An emergent property of a system is a property 
that arises out of smaller pieces that doesn't seem 
to exist in any of the individual pieces.

Examples:

• Individual neurons work by firing in response to 
particular combinations of inputs. Somehow, this 
leads to consciousness, love, and ennui.

• Individual atoms obey the laws of quantum 
mechanics and just interact with other atoms. 
Somehow, it's possible to combine them together 
to make iPhones and pumpkin pie.



Emergent Properties of Computation

• All computing systems equal to Turing machines 
exhibit several surprising emergent properties.

• If we believe the Church-Turing thesis, these 
emergent properties are, in a sense, “inherent” 
to computation. Computation can’t exist without 
them.

• These emergent properties are what ultimately 
make computation so interesting and so 
powerful.

• As we'll see, though, they're also computation's 
Achilles heel – they're how we find concrete 
examples of impossible problems.



Two Emergent Properties

There are two key emergent properties of 
computation that we will discuss:

• Universality: There is a single computing 
device capable of performing any 
computation.

• Self-Reference: Computing devices can 
ask questions about their own behavior.

As you'll see, the combination of these 
properties leads to simple examples of 
impossible problems and elegant proofs of 
impossibility.



Universal Machines



An Observation

When we've been discussing Turing 
machines, we've talked about designing 
specific TMs to solve specific problems.

Does this match your real-world 
experiences? Do you have one computing 
device for each task you need to perform?



Can we make a “reprogrammable
Turing machine?”



A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.

● We could imagine it as a method

boolean simulateTM(TM M, string w)

with the following behavior:

● If M accepts w, then simulateTM(M, w) returns true .

● If M rejects w, then simulateTM(M, w) returns false .

● If M loops on w, then simulateTM(M, w) loops infinitely.

true!

false!simulateTM

(loop)

M

...input...w



A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w



A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

simulateTM

true!

false!

(loop)

...input...

M

w



A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w



A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

accept!

reject!

(loop)

...input...

M

w
TM that runs

other TMs



A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

...input...

M

w Universal TM

accept!

reject!

(loop)



The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of UTM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

TM

...input...

M

w Universal TM

accept!

reject!

(loop)

M does to w

what

UTM does to ⟨M, w⟩.
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Since UTM is a TM, it has a language.

What is the language of the universal
Turing machine?



The Language of UTM

Recall that the language of a TM is the set of all 
strings that TM accepts.

UTM, when run on a string ⟨M, w⟩, where M is a TM 
and w is a string, will

…  accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w}

= { ⟨M, w⟩ | M is a TM and w
∈ ℒ(M) }



The Language of UTM

Recall that the language of a TM is the set of all 
strings that TM accepts.

UTM, when run on a string ⟨M, w⟩, where M is a TM 
and w is a string, will

…  accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w}

= { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }



The Language ATM

The acceptance language for Turing 
machines, denoted ATM, is the language of the 
universal Turing machine:

ATM = ℒ(UTM)

= { ⟨M, w⟩ | M is a TM and
M accepts w }

Useful fact:

⟨M, w⟩ ∈ ATM ↔   M accepts w.

Because ATM = ℒ(UTM), we know that ATM ∈ RE.



Great Question to Ponder

Simplify this expression:

⟨UTM, ⟨UTM, ⟨UTM, ⟨UTM, ⟨M, w⟩⟩⟩⟩⟩ ∈ ATM.

If you can do this, you probably understand 
how things fit together.

If you’re having trouble, no worries! It 
might be easier to start with this 
expression:

⟨UTM, ⟨M, w⟩⟩ ∈ ATM.



Regular
Languages CFLs

All Languages

RE

A
TM



Uh… so what?



Universality of computation has
practical consequences.



Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!simulateTM

(loop)

M

...input...w



Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!simulateProgram

(loop)

...input...w

for (int i = 2;
i < n; i++) {
if (n % i == 0)

…
}

code



Programs Simulating Programs

The fact that there’s a universal TM, 
combined with the fact that computers can 
simulate TMs and vice-versa, means that it’s 
possible to write a program that simulates 
other programs.

These programs go by many names:

An interpreter, like the Java Virtual 
Machine or most implementations of 
Python.

A virtual machine, like VMWare or 
VirtualBox, that simulates an entire 
computer.



Why Does This Matter?

● The key idea behind the universal TM is that
idea that TMs can be fed as inputs into other
TMs.

● Similarly, an interpreter is a program that takes
other programs as inputs.

● Similarly, an emulator is a program that takes entire
computers as inputs.

● This hits at the core idea that computing
devices can perform computations on other
computing devices.



Time-Out for Announcements!



Problem Sets

• Problem Set Five is due tomorrow night. 

• Late period extends this to Saturday. 

• This is the last assignment you can take 
a late period on.

• If you submitted the CFG before we
linked to it, you need to submit again.



Final Exam Logistics

• Our final exam is next Friday.

• The exam is cumulative. You’re 
responsible for topics from PS0 – PS6 
and all of the lectures up through 
Unsolvable Problems (this Friday).

• The exam is the same style as the 
midterm. More details on a Campuswire
post going up today.



Your Questions

“Why did you decide to coterm (versus 
double major, minor, enter industry before 
grad school, etc) and what do you wish you 

had known before coterming?”



Your Questions

“Tabs or spaces?”



Your Questions

“What made you interested in CS?”



Your Questions

Have more questions? 

Go to sli.do and put in code G517.

The event is closed, but you can still click
on it and add questions / vote.



Let’s take a five minute break!



Teaser #1:

This language ATM has some interesting 
properties beyond what we’ve seen here.



Self-Referential Software



Quines

A Quine is a program that, when run, 
prints its own source code.

Quines aren't allowed to just read the file 
containing their source code and print it 
out; that's cheating (and technically 
incorrect if someone changes that file!)

How would you write such a program?



Writing a Quine



Self-Referential Programs

Claim: Going forward, assume that any 
program can be augmented to include a 
method called mySource() that returns a string 
representation of its source code.

General idea:

• Write the initial program with mySource() as a 
placeholder.

• Use the Quine technique we just saw to 
convert the program into something self-
referential.

Now, mySource() magically works as intended.



Self-Referential Programs

The fact that we can write Quines is not a 
coincidence.

Theorem (Kleene’s Second Recursion 
Theorem): It is possible to construct TMs 
that perform arbitrary computations on their 
own “source code” (the string encoding of the 
TM).

In other words, any computing system that’s 
equal to a Turing machine possesses some 
mechanism for self-reference!

Want to see how deep the rabbit hole goes? 
Take CS154!



Teaser #2:

Self-reference lets machines compute on 
themselves. That lets them do Cruel and 

Unusual Things.



A Note on TM/Program Equivalence



Equivalence of TMs and Programs

Every TM

• receives some input,

• does some work, then

• (optionally) accepts or rejects.

We can model a TM as a computer program where

• the input is provided by a special method 
getInput() that returns the input to the program,

• the program's logic is written in a normal 
programming language, and

• the program (optionally) calls the special method 
accept() to immediately accept the input and 
reject() to immediately reject the input.



Equivalence of TMs and Programs

Here's a sample program we might use to model a 
Turing machine for { w ∈ {a, b}* | w has the same 
number of a's and b's }:

int main() {
string input = getInput();
int difference = 0;

for (char ch: input) {
if (ch == 'a') difference++;
else if (ch == 'b') difference--;
else reject();

}

if (difference == 0) accept();
else reject();

}



Equivalence of TMs and Programs

As mentioned before, it's always possible to build a 
method mySource() into a program, which returns the 
source code of the program.

For example, here's a narcissistic program:

int main() {
string me = mySource();
string input = getInput();

if (input == me) accept();
else reject();

}



Equivalence of TMs and Programs

Sometimes, TMs use other TMs as subroutines.

We can think of a decider for a language as a 
method that takes in some number of arguments 
and returns a boolean.

For example, a decider for { anbn | n ∈ ℕ } might be 
represented in software as a method with this 
signature:

bool isAnBn(string w);

Similarly, a decider for { ⟨m, n⟩ | m, n ∈ ℕ and m is 
a multiple of n } might be represented in software 
as a method with this signature:

bool isMultipleOf(int m, int n);



Self-Defeating Objects



A self-defeating object is an object whose 
essential properties ensure it doesn’t exist.



Question: Why is there no largest integer?

Answer: Because if n is the largest integer, 
what happens when we look at n+1?



Theorem: There is no largest integer.

Proof sketch: Suppose for the sake of contradiction
that there is a largest integer. Call that integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest integer.

Contradiction! ■

Self-Defeating Objects



Self-Defeating Objects

The general template for proving that x is a 
self-defeating object is as follows:

• Assume that x exists.

• Construct some object f(x) from x.

• Show that f(x) has some impossible 
property.

• Conclude that x doesn’t exist.

The particulars of what x and f(x) are, and 
why f(x) has an impossible property, 
depend on the specifics of the proof.



An Important Point



Claim: There is a largest integer.

Proof: Assume x is the largest integer.

Notice that x > x – 1.

So there’s no contradiction. ■

How do we know there’s no 
contradiction? We just checked one 

case.

Careful – we’re assuming 
what we’re trying to prove!



Self-Defeating Objects

You cannot show that a self-defeating object x
does exist by using this line of reasoning:

• Suppose that x exists.

• Construct some object g(x) from x.

• Show that g(x) has no undesirable properties.

• Conclude that x exists.

The fact that g(x) has no bad properties doesn’t 
mean that x exists. It just means you didn’t look 
hard enough for a counterexample. 😃



Teaser #3:

Certain Turing machines can’t exist, as 
they’d be self-defeating objects.



Learning About a String

Suppose M is a recognizer for some important 
language.

We have a string w and we really, really want to 
know whether w ∈ ℒ(M).

How could we do this?



Observation:

w ∈ ℒ(M)

if and only if

M accepts w.
… you can try to 

determine whether 
this is true.

If you want to know 
whether this is true…



Learning About a String

Option 1: Run M on w.

What could happen?

• M could accept w. Great! We know w ∈ 
ℒ(M).

• M could reject w. Great! We know w ∉ ℒ(M).

• M could loop on w. Hmmm. We’ve learned 
nothing.

This won’t always tell us whether w ∈ ℒ(M). 
We’ll need a different strategy.



Observation:

w ∈ ℒ(M)

if and only if

M accepts w

if and only if

⟨M, w⟩ ∈ ATM.
… you can try to 

determine whether 
this is true.

If you want to know 
whether this is true…



Learning About a String

Option 2: Use the universal Turing machine, which 
is a recognizer for ATM!

Specifically, run UTM on ⟨M, w⟩.

What could happen?

• UTM could accept ⟨M, w⟩. Great! Then w ∈ ℒ(M).

• UTM could reject ⟨M, w⟩. Great! Then w ∉ ℒ(M).

• UTM could loop on ⟨M, w⟩. Hmmm. We’ve learned 
nothing.

This won’t always tell us whether w ∈ ℒ(M). We’ll 
need a different strategy.



Learning About a String

Option 2: Use the universal Turing machine, which 
is a recognizer for ATM!

Specifically, run UTM on ⟨M, w⟩.

What could happen?

UTM could accept ⟨M, w⟩. Great! Then w ∈ ℒ(M).

UTM could reject ⟨M, w⟩. Great! Then w ∉ ℒ(M).

UTM could loop on ⟨M, w⟩. Hmmm. We’ve learned 
nothing.

This won’t always tell us whether w ∈ ℒ(M). We’ll 
need a different strategy.

What if we used a 
decider, not a 
recognizer?



Learning About a String

Option 3: Build a decider for ATM, rather than just 
a recognizer.

Specifically, build a decider for ATM, then run that 
decider on ⟨M, w⟩.

What could happen?

The decider could accept ⟨M, w⟩. Then w ∈ ℒ(M).

The decider could reject ⟨M, w⟩. Then w ∉ ℒ(M).

Question: How do we build this decider?

Decider
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.



Claim: A decider for ATM is a self-defeating 
object. It therefore doesn’t exist.



A Self-Defeating Object

Let’s suppose that, somehow, we managed to build a 
decider for ATM.

Schematically, that decider would look like this:

We could represent this decider in software as a 
method

bool willAccept(string program, string input);

that takes as input a program and a string, then returns 
whether that program will accept that string.

Decider
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.



What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}
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}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input. 
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!
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What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}
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What does this program do?

bool willAccept(string program, string input) {
/* … some implementation … */

}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

“The largest 
integer n”

“Using n to get n + 1”



What does this program do?

bool willAccept(string program, string 
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest 
integer.

Proof sketch: Suppose for the 
sake of contradiction that there 
is a largest integer. Call that 
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest 
integer.

Contradiction! ■



What does this program do?

bool willAccept(string program, string 
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest 
integer.

Proof sketch: Suppose for the 
sake of contradiction that there 
is a largest integer. Call that 
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest 
integer.

Contradiction! ■-ish

Assume there exists this object x which has these 
properties that are too powerful to actually work.



What does this program do?

bool willAccept(string program, string 
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest 
integer.

Proof sketch: Suppose for the 
sake of contradiction that there 
is a largest integer. Call that 
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest 
integer.

Contradiction! ■-ish

Use the purported properties of x against itself to 
create a contradiction.



What does this program do?

bool willAccept(string program, string 
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest 
integer.

Proof sketch: Suppose for the 
sake of contradiction that there 
is a largest integer. Call that 
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest 
integer.

Contradiction! ■-ish

Thus, this object x cannot exist!



What does this program do?

bool willAccept(string program, string 
input) {

/* …some implementation… */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Theorem: There is no largest 
integer.

Proof sketch: Suppose for the 
sake of contradiction that there 
is a largest integer. Call that 
integer n.

Consider the integer n+1.

Notice that n < n+1.

But then n isn’t the largest 
integer.

Contradiction! ■-ish



Theorem: ATM ∉ R.

Proof: By contradiction; assume that ATM ∈ R. Then there is some decider
D for ATM, which we can represent in software as a method willAccept
that takes as input the source code of a program and an input, then
returns true if the program accepts the input and false otherwise.

Given this, we could then construct this program P:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) reject();
else accept();

}

Choose any string w and trace through the execution of program P on input
w, focusing on the answer given back by the willAccept method. If willAccept(me,
input) returns true, then P must accept its input w. However, in this case P
proceeds to reject its input w. Otherwise, if willAccept(me, input) returns false,
then P must not accept its input w. However, in this case P proceeds to
accept its input w.

In both cases we reach a contradiction, so our assumption must have been
wrong. Therefore, ATM ∉ R. ■
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Regular
Languages CFLs

All Languages

R RE

ATM



What Does This Mean?

In one fell swoop, we've proven that

• A decider for ATM is a self-defeating 
object.

• ATM is undecidable; there is no general 
algorithm that can determine whether a 
TM will accept a string.

• R ≠ RE, because ATM ∉ R but ATM ∈ RE.

What do these three statements really 
mean? As in, why should you care?



Self-Defeating Objects

The fact that a decider for ATM is a self-
defeating object is analogous to this classic 
philosophical question:

If you know what you are fated
to do, can you avoid your fate?

If we have a decider for ATM, we could use 
it to build a TM that determines what it’s 
supposed to do next, then chooses to do the 
opposite!



ATM ∉ R

The proof we've done says that

There is no algorithm that can 
determine whether a program will 

accept an input.

Our proof just assumed there was some 
decider for ATM and didn't assume anything 
about how that decider worked. No matter 
how you try to implement a decider for ATM, 
you can never succeed!



ATM ∉ R

What exactly does it mean for ATM to be 
undecidable?

Intuition: The only general way to find 
out what a program will do is to run it.

As you'll see, this means that it's provably 
impossible for computers to be able to 
answer questions about what a program 
will do.



ATM ∉ R

At a more fundamental level, the existence of 
undecidable problems tells us the following:

There is a difference between what is true and 
what we can discover is true.

Given a TM M and a string w, one of these two 
statements is true:

M accepts w

M does not accept w

But since ATM is undecidable, there is no algorithm 
that can always determine which of these 
statements is true!



R ≠ RE

Because R ≠ RE, there is a difference 
between decidability and recognizability:

In some sense, it is fundamentally 
harder to solve a problem than it is to 

check an answer.

There are problems where when you have 
the answer, you can confirm it (build a 
recognizer), but where if you don’t have 
the answer, you can’t come up with it in a 
mechanical way (build a decider).



Next Time

More Undecidable Problems

Problems truly beyond the limits of 
algorithmic problem-solving!

Consequences of Undecidability

Why does any of this matter outside of a 
computer science course?


